

EIC Users Group Meeting 2016:

EIC Computing

Markus Diefenthaler

Computing R&D as part of (Detector) R&D

2016

Detector & Physics Simulations:

one decade of software development

2025

Online & Offline Framework

Towards an active collaboration

Jefferson Lab

Workshops at Jefferson Lab

09/2015: Workshop EIC Software Meeting

- organizers: Elke-Caroline Aschenauer (BNL), Markus Diefenthaler
- workshop goals:
 - review software status with focus on detector and physics simulations
 - identify interfaces between existing BNL and JLab software
 - foster active collaboration
- website: https://www.jlab.org/conferences/eicsw/

03/2016: Workshop Future Trends in NP Computing

- organizers: Amber Boehnlein, Markus Diefenthaler, and Graham Heyes
- workshop goals:
 - incubator for computing ideas in the the exascale era
 - identify ways to improve usability of NP Computing
 - identify ways to make new data faster available for physics analysis
 - identify best practices for NP Computing
- website: https://www.jlab.org/conferences/trends2016/

EIC Software Meeting (09/2015)

- 36 participants from both BNL (mostly remotely) and Jefferson Lab
- presentations available on https://www.jlab.org/conferences/eicsw/

Thursday, Septem	ber 24, 2015 (F326/327)	
09:00 - 09:15	Welcome, Meeting goals	Markus Diefenthaler
09:15 - 10:45	Monte Carlo Generators - Part I	
09:15 - 10:00	Monte Carlo Generators for EIC	Elke-Caroline Aschenauer
10:00 - 10:30	mPYTHIA - Towards an Event Generator for TMD	Hrayr Matevosyan
10:30 - 10:45	Coffee Break	
10:45 - 11:59	Monte Carlo Generators - Part II	
10:45 - 11:00	Simulating spectator nucleon tagging with EIC	Christian Weiss
11:00 - 11:30	Forward Spectator Tagging Event Generator	Kijun Park
11:30 - 11:59	<u>Hadron Elecro and Photo Production Generators</u> <u>Overview</u>	Rakitha Beminiwattha
12:00 - 01:00	Lunch	
01:00 - 02:15	Monte Carlo Generators III	
01:00 - 01:45	Recent developments in Pythia 8	Stefan Prestel
01:45 - 02:15	Discussion about Monte Carlo Generators	
02:15 - 02:30	Break	
02:30 - 5:00	Software Tools	
02:30 - 03:00	EicRoot software framework	Alexander Kiselev
03:00 - 03:30	GEant4 Monte Carlo	Maurizio Ungaro
03:30 - 04:00	EicRoot for tracking R&D studies	Alexander Kiselev
04:00 - 04:15	Break	
04:00 - 05:00	Discussion on interfaces	
06:00 - 08:00	Dinner at Fin SeaFood	

Friday, September 25, 2015 (L102)			
09:00 - 10:30	Software Frameworks I		
09:00 - 09:50	Framework design experience from art	Marc Paterno	
09:50 - 10:10	The JANA Design	David Lawrence	
10:10 - 10:30	Software design ideas for SoLID	Ole Hansen	
10:30 - 10:45	Coffee Break		
10:45 - 11:40	Software Frameworks II, Monte Carlo Generators IV		
10:45 - 11:10	Fun4all	Christopher Pinkenburg	
11:10 - 11:40	TMD Evolution and QCD Theory at An EIC	Ted Rogers	
11:40 - 12:10	Meeting summary and common goals		
12:10 - 01:00	Lunch		

focus on detector & physics simulations:

- MC generators for EIC physics program
- tools for detector simulations
- tracking software
- tools for detector development

Workshop Review of MC generators for EIC

- MC generators for ep processes:
 - several excellent MC generators available
 - but essential pieces are missing:
 - MC generator for (un)-polarized p_T dependent physics
 - radiative corrections not integrated in many generators, required as physics and detector smearing don't factorize

LEPTO (DIS)

PEPSI (polarized DIS)

PYTHIA 6

PYTHIA 8

CASCADE (ep + pp, p_T)

MILOU (DVCS)

DJANGOH (radiative effects)

many more generators

- MC generators for eA processes:
 - significantly worse situation than ep
 - need a SIDIS generator w/o saturation
 - need CASCADE like eA generator

PYTHIA + DPMJET

DJANGOH (radiative effects)

SARTRE (diffractive, DVCS)

EicRoot

- based on FairRoot, developed by Alexander Kiselev (BNL) for eRHIC
- available for standalone R&D studies

EicRoot Tracking

adapted from other experiments:

- PandaRoot: ideal track finder, GenFit fitter, (...)
- **FopiRoot:** TPC digitization, realistic track finders (Hough transform; Riemann sphere fit), GenFit fitter, RAVE vertex builder, (...)
- HERMES: linearized Kalman filter

Kalman filter fit quality:

1 GeV π^+ tracks at η =0.5:

32 GeV π^+ tracks at η =3.0:

Fast Monte Carlo Productions

- JLEIC detector and physics simulations based on GEMC
- **GEMC**: framework for the Geant4 toolkit (C++), developed by Maurizio Ungaro (JLab)
- simulation of simple and full featured detectors (including estimated detector responses)
- fast running mode will full detector acceptance for physics simulations

Example for GEMC simulations

Electron Downstream View

Ion Downstream View

Jefferson Lab

Towards a full track reconstruction

implement full track reconstruction in the central detector:

- validate the resolution of single tracks in the central detector
- study the impact of secondaries and random backgrounds
- extend reconstruction to near- and far forward regions

develop a full reconstruction code for analysis of EIC data

Future Trends in NP Computing

- high interest in NP / HEP community in the future of computing
- DOE Office of Advanced Scientific Computing Research works towards:
 - Super Computing at the Exascale (ANL, LB(N)L, ORNL)
 - Big Data and powerful computing
- time scale of EIC project allows for major improvements:
 - incorporate computing trends
 - but no change for change's sake
 - possible improvements:
 - improved usability to enhance productivity
 - significantly faster data (re)processing and analysis
 - better integration of good practices in analysis workflows, e.g., data preservation
- workshop to collect innovative ideas and to identify common goals:

March 16th – 18th at Jefferson Lab

website: https://www.jlab.org/conferences/trends2016/

Computing trends

EXASCALE COMPUTING

101010 TERA PETA EXASCALE & BEYOND

Big Data - A possible paradigm shift for NP / HEP?

- Big Data is not about size
- Big Data is about the ability to quickly analyze large amounts of data. i.e.
 - have all raw and processed data permanently stored
 - in a scaleable random access storage
 - with fast, efficient data indexing (lookup) capabilities
 - resulting in a) more efficient use of computational resources (CPU) and b) fast data (re)processing and analysis
- •NoSQL (non-relational) databases:
 - more flexible
 - better scaleable than traditional, relational databases
 - e.g., a graph database (e.g., used by Facebook)
- R&D project:
 - combine data of various SIDIS experiments
 - in a graph database
 - extract observables for TMDs
 - exploring modern data science methods
 - perhaps taking advantage of supercomputing

Exascale-2025

- Advanced Scientific Computing Research (ASCR) and NNSA Exascale
 - Build and deploy an Exascale Machine by 2025-27
 - Significant challenges: Parallel R&D paths
 - 'prototype' machines at 100 petaflops and 300 petaflops
- Scientific codes have to be developed
 - Intense development on underlying applied math libraries
 - Development of multi-scale simulations
 - "In Situ" visualization and data analysis
- Workflows to support simultaneous simulations and experimental data analysis
 - Seamless Integration of different scale hardware resources
 - Seamless Integration of research data management
- Fully funded, Project-like structure. Labs are being contacted for input
 - White papers requested: 240 received.
 - Exascale 'Requirements Reviews' with other offices: NP in June
 - 'Applications' area lead is gathering priorities

Computing in the Exascale Era

Exascale Computing - not just exaflops:

- exceptional degree of parallelism far beyond the capabilities of the Grid
- rack-size pentascale computing

Exascale Computing at the EIC:

- integrate computing at accelerator / detector as it has never done before
- Lattice QCD in the Exascale era
- multi-scale multi accelerator / physics modeling
- highly parallelized track finding algorithms
- machine learning for automated detector calibrations and data validation

Computing R&D as part of (Detector) R&D

2016

one decade of software development

2025

Detector & Physics Simulations:

status reviewed in 09/15 workshop active collaboration, R&D consortium being formed active participation by you very welcome

Online & Offline Framework collect first ideas

Workshop: Future Trends in NP Computing